Exotic Inverse Kinetic Isotopic Effect in the Thermal Decomposition of Levitated Aluminum Iodate Hexahydrate Particles.

The journal of physical chemistry letters(2023)

引用 1|浏览0
暂无评分
摘要
Aluminum iodate hexahydrate ([Al(HO)](IO)(HIO); AIH) represents a novel, oxidizing material for energetic applications. Recently, AIH was synthesized to replace the aluminum oxide passivation layer of aluminum nanoenergetic materials (ALNEM). The design of reactive coatings for ALNEM-doped hydrocarbon fuels in propulsion systems requires fundamental insights of the elementary steps of the decomposition of AIH. Here, through the levitation of single AIH particles in an ultrasonic field, we reveal a three-stage decomposition mechanism initiated by loss of water (HO) accompanied by an unconventional inverse isotopic effect and ultimate breakdown of AIH into gaseous elements (iodine and oxygen). Hence, AIH coating on aluminum nanoparticles replacing the oxide layer would provide a critical supply of oxygen in direct contact with the metal surface thus enhancing reactivity and reducing ignition delays, further eliminating decades-old obstacles of passivation layers on nanoenergetic materials. These findings demonstrate the potential of AIH to aid in the development of next-generation propulsion systems.
更多
查看译文
关键词
thermal decomposition,exotic inverse kinetic,aluminum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要