Theory of resonantly enhanced photo-induced superconductivity

arxiv(2023)

引用 0|浏览25
暂无评分
摘要
Optical driving of materials has emerged as a promising tool to control their macroscopic properties. In this work we present a microscopic mechanism for efficiently photo-inducing superconductivity. We investigate an attractive electron-electron interaction mediated by a boson that couples to an electronic transition between two bands separated by a band gap. While this attraction is small in equilibrium, we find that it can be increased by several orders of magnitude when the bosons are driven into a nonthermal state. Moreover, not only is the induced attraction enhanced when the bosons are driven, but this enhancement is further amplified when the boson is near-resonant to the electronic interband excitation energy, making this mechanism a potentially ideal candidate for efficient photo-induced superconductivity. We first use exact diagonalisation calculations of a two-site model to prove that pairing is indeed resonantly enhanced out-of equilibrium. We then investigate the potential of this mechanism to increase the superconducting transition temperature, and find by investigating the gap equation that pairing is resonantly amplified when the bosons are in a nonthermal state. We argue that our proposed mechanism provides a simple prescription for designing new platforms that enable photo-induced superconductivity at significant temperatures and moderate driving strengths, and estimate a transition temperature $T_{\rm c} \approx 5\rm{K}$ for a $\rm SrTiO_3$ -- graphene heterostructure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要