Theoretical Study on the Swelling Mechanism and Structural Stability of Ni3Al-LDH Based on Molecular Dynamics

ACS OMEGA(2023)

引用 2|浏览2
暂无评分
摘要
layered double hydroxide (LDH) as a kind of 2D layer material has a swelling phenomenon. Because swelling significantly affects the adsorption, catalysis, energy storage, and other application properties of LDHs, it is essential to study the interlayer spacing, structural stability, and ion diffusion after swelling. In this paper, a periodic computational model of Ni3Al-LDH is constructed, and the supramolecular structure, swelling law, stability, and anion diffusion properties of Ni3Al-LDH are investigated by molecular dynamics theory calculations. The results show that the interlayer water molecules of Ni3Al-LDH present a regular layered arrangement, combining with the interlayer anions by hydrogen bonds. As the number of water molecules increases, the hydrogen bond between the anion and the basal layer gradually weakens and disappears when the number of water molecules exceeds 32. The hydrogen bond between the anion and the water molecule gradually increases, reaching an extreme value when the number of water molecules is 16. The interlayer spacing of Ni3Al-LDH is not linear with the number of water molecules. The interlayer spacing increases slowly when the number of water molecules is more than 24. The maximum layer spacing is stable at around 19 angstrom. The interlayer spacing, binding energy, and hydration energy show an upper limit for swelling: the number of water molecules is 32. When the number of interlayer water molecules is 16, the water molecules' layer structure and LDH interlayer spacing are suitable for anions to obtain the maximum diffusion rate, 10.97 x 10(-8) cm(2)center dot s(-1).
更多
查看译文
关键词
molecular dynamics,structural stability,al-ldh
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要