Detection of single ions in a nanoparticle coupled to a fiber cavity

OPTICA(2023)

引用 0|浏览10
暂无评分
摘要
Many quantum information protocols require the storage and manipulation of information over long times, and its exchange between nodes of a quantum network across long distances. Implementing these protocols requires an advanced quantum hardware, featuring, for example, a register of long-lived and interacting qubits with an efficient optical interface in the telecommunication band. Here we present the Purcell-enhanced detection of single solid-state ions in erbium-doped nanoparticles placed in a fiber cavity, emitting photons at 1536 nm. The open-access design of the cavity allows for complete tunability in both space and frequency, selecting individual particles and ions. The ions are confined in a volume two orders of magnitude smaller than in previous realizations, increasing the probability of finding ions separated by only a few nanometers, which could then interact. We report the detection of individual spectral features presenting saturation of the emission count rate and linewidth, as expected for two-level systems. We also report an uncorrected g((2)) (0) of 0.24(5) for the emitted field, confirming the presence of a single emitter. Our fully fiber-integrated system is an important step towards the realization of the initially envisioned quantum hardware. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要