Impact of supplementary air filtration on aerosols and particulate matter in a UK hospital ward: a case study.

M J Butler, D Sloof, C Peters,A Conway Morris,T Gouliouris, R Thaxter,V L Keevil,C B Beggs

The Journal of hospital infection(2023)

引用 3|浏览5
暂无评分
摘要
BACKGROUND:Aerosol spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a major problem in hospitals, leading to an increase in supplementary high-efficiency particulate air filtration aimed at reducing nosocomial transmission. This article reports a natural experiment that occurred when an air cleaning unit (ACU) on a medicine for older people ward was switched off accidentally while being commissioned. AIM:To assess aerosol transport within the ward and determine whether the ACU reduced airborne particulate matter (PM) levels. METHODS:An ACU was placed in a ward comprising two six-bedded bays plus three single-bed isolation rooms which had previously experienced several outbreaks of coronavirus disease 2019. During commissioning, real-time measurements of key indoor air quality parameters (PM1-10, CO2, temperature and humidity) were collected from multiple sensors over 2 days. During this period, the ACU was switched off accidentally for approximately 7 h, allowing the impact of the intervention on PM to be assessed. FINDINGS:The ACU reduced the PM counts considerably (e.g. PM1 65.5-78.2%) throughout the ward (P<0.001 all sizes), with positive correlation found for all PM fractions and CO2 (r=0.343-0.817; all P<0.001). PM counts rose/fell simultaneously when the ACU was off, with correlation of PM signals from multiple locations (e.g. r=0.343-0.868; all P<0.001) for particulates <1 μm). CONCLUSION:Aerosols migrated rapidly between the various ward subcompartments, suggesting that social distancing alone cannot prevent nosocomial transmission of SARS-CoV-2 as this fails to mitigate longer-range (>2 m) transmission. The ACU reduced PM levels considerably throughout the ward space, indicating its potential as an effective intervention to reduce the risk posed by infectious airborne particles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要