Proteomics and Molecular Docking Analyses Reveal the Bio-Chemical and Molecular Mechanism Underlying the Hypolipidemic Activity of Nano-Liposomal Bioactive Peptides in 3T3-L1 Adipocytes.

Foods (Basel, Switzerland)(2023)

引用 0|浏览12
暂无评分
摘要
Obesity is a global health concern. Physical activities and eating nutrient-rich functional foods can prevent obesity. In this study, nano-liposomal encapsulated bioactive peptides (BPs) were developed to reduce cellular lipids. The peptide sequence NH-PCGVPMLTVAEQAQ-COH was chemically synthesized. The limited membrane permeability of the BPs was improved by encapsulating the BPs with a nano-liposomal carrier, which was produced by thin-layer formation. The nano-liposomal BPs had a diameter of ~157 nm and were monodispersed in solution. The encapsulation capacity was 61.2 ± 3.2%. The nano-liposomal BPs had no significant cytotoxicity on the tested cells, keratinocytes, fibroblasts, and adipocytes. The in vitro hypolipidemic activity significantly promoted the breakdown of triglycerides (TGs). Lipid droplet staining was correlated with TG content. Proteomics analysis identified 2418 differentially expressed proteins. The nano-liposomal BPs affected various biochemical pathways beyond lipolysis. The nano-liposomal BP treatment decreased the fatty acid synthase expression by 17.41 ± 1.17%. HDOCK revealed that the BPs inhibited fatty acid synthase (FAS) at the thioesterase domain. The HDOCK score of the BPs was lower than that of orlistat, a known obesity drug, indicating stronger binding. Proteomics and molecular docking analyses confirmed that the nano-liposomal BPs were suitable for use in functional foods to prevent obesity.
更多
查看译文
关键词
HDOCK,adipocyte,fatty acid synthase,glycerol,lipolysis,liposome,nanoparticles,orlistat
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要