Data-Driven Phenotyping of Alzheimer's Disease under Epigenetic Conditions Using Partial Volume Correction of PET Studies and Manifold Learning

Biomedicines(2023)

引用 0|浏览7
暂无评分
摘要
Alzheimer's disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission Tomography (PET) is employed for the quantification of pathological amyloid deposition in brain tissues. The objective is to develop a new methodology for the hyperparametric analysis of changes in cognitive scores and PET features to test for there being multiple AD phenotypes. We used a computational method to identify phenotypes in a retrospective cohort study (532 subjects), using PET and Magnetic Resonance Imaging (MRI) images and neuropsychological assessments, to develop a novel computational phenotyping method that uses Partial Volume Correction (PVC) and subsets of neuropsychological assessments in a non-biased fashion. Our pipeline is based on a Regional Spread Function (RSF) method for PVC and a t-distributed Stochastic Neighbor Embedding (t-SNE) manifold. The results presented demonstrate that (1) the approach to data-driven phenotyping is valid, (2) the different techniques involved in the pipelines produce different results, and (3) they permit us to identify the best phenotyping pipeline. The method identifies three phenotypes and permits us to analyze them under epigenetic conditions.
更多
查看译文
关键词
PET,Partial Volume Correction (PVC),manifold learning,artificial intelligence,data-driven AD phenotyping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要