Biolistic Transformation of Chlamydomonas reinhardtii and Saccharomyces cerevisiae Mitochondria

Methods in molecular biology (Clifton, N.J.)(2023)

引用 3|浏览4
暂无评分
摘要
Chlamydomonas reinhardtii and Saccharomyces cerevisiae are currently the two micro-organisms in which genetic transformation of mitochondria is routinely performed. The generation of a large variety of defined alterations as well as the insertion of ectopic genes in the mitochondrial genome (mtDNA) are possible, especially in yeast. Biolistic transformation of mitochondria is achieved through the bombardment of microprojectiles coated with DNA, which can be incorporated into mtDNA thanks to the highly efficient homologous recombination machinery present in S. cerevisiae and C. reinhardtii organelles. Despite a low frequency of transformation, the isolation of transformants in yeast is relatively quick and easy, since several natural or artificial selectable markers are available, while the selection in C. reinhardtii remains long and awaits new markers. Here, we describe the materials and techniques used to perform biolistic transformation, in order to mutagenize endogenous mitochondrial genes or insert novel markers into mtDNA. Although alternative strategies to edit mtDNA are being set up, so far, insertion of ectopic genes relies on the biolistic transformation techniques.
更多
查看译文
关键词
Mitochondrial DNA,Genetic transformation,Biolistic techniques,Homologous recombination,Mutagenesis and ectopic gene insertion,Chlamydomonas reinhardtii,Saccharomyces cerevisiae
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要