Sorting nexin 10 sustains PDGF receptor signaling in glioblastoma stem cells via endosomal protein sorting.

JCI insight(2023)

引用 1|浏览27
暂无评分
摘要
Glioblastoma is the most malignant primary brain tumor, the prognosis of which remains dismal even with aggressive surgical, medical, and radiation therapies. Glioblastoma stem cells (GSCs) promote therapeutic resistance and cellular heterogeneity due to their self-renewal properties and capacity for plasticity. To understand the molecular processes essential for maintaining GSCs, we performed an integrative analysis comparing active enhancer landscapes, transcriptional profiles, and functional genomics profiles of GSCs and non-neoplastic neural stem cells (NSCs). We identified sorting nexin 10 (SNX10), an endosomal protein sorting factor, as selectively expressed in GSCs compared with NSCs and essential for GSC survival. Targeting SNX10 impaired GSC viability and proliferation, induced apoptosis, and reduced self-renewal capacity. Mechanistically, GSCs utilized endosomal protein sorting to promote platelet-derived growth factor receptor β (PDGFRβ) proliferative and stem cell signaling pathways through posttranscriptional regulation of the PDGFR tyrosine kinase. Targeting SNX10 expression extended survival of orthotopic xenograft-bearing mice, and high SNX10 expression correlated with poor glioblastoma patient prognosis, suggesting its potential clinical importance. Thus, our study reveals an essential connection between endosomal protein sorting and oncogenic receptor tyrosine kinase signaling and suggests that targeting endosomal sorting may represent a promising therapeutic approach for glioblastoma treatment.
更多
查看译文
关键词
Brain cancer,Epigenetics,Growth factors,Oncology,Stem cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要