Abscisic acid collaborates with lignin and flavonoid to improve pre-silking drought tolerance by tuning stem elongation and ear development in maize (Zea mays L.).

The Plant journal : for cell and molecular biology(2023)

引用 5|浏览9
暂无评分
摘要
Drought is a major abiotic stress reducing maize (Zea mays) yield worldwide especially before and during silking. The mechanism underlying drought tolerance in maize and the roles of different organs have not been elucidated. Hence, we conducted field trials under pre-silking drought conditions using two maize genotypes: FM985 (drought-tolerant) and ZD958 (drought-sensitive). The two genotypes did not differ in plant height, grain number, and yield under control conditions. However, the grain number per ear and the yield of FM985 were 38.1 and 35.1% higher and plants were 17.6% shorter than ZD958 under drought conditions. More 13 C photosynthates were transported to the ear in FM985 than in ZD958, which increased floret fertility and grain number. The number of differentially expressed genes was much higher in stem than in other organs. Stem-ear interactions are key determinants of drought tolerance, in which expression of genes related to abscisic acid, lignin, and flavonoid biosynthesis and carbon metabolism in the stem was induced by drought, which inhibited stem elongation and promoted assimilate allocation to the ear in FM985. In comparison with ZD958, the activities of trehalose 6-phosphate phosphatase and sucrose non-fermentation-associated kinase 1 were higher in the stem and lower in the kernel of FM985, which facilitated kernel formation. These results reveal that, beyond the ear response, stem elongation is involved in the whole process of drought tolerance before silking. Abscisic acid together with trehalose 6-phosphate, lignin, and flavonoid suppresses stem elongation and allocates assimilates into the ear, providing a novel and systematic regulatory pathway for drought tolerance in maize.
更多
查看译文
关键词
assimilate distribution,critical period bracketing silking,drought stress,ear growth
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要