Synergistic effect of sulfidated nano zerovalent iron and proton-buffering montmorillonite in reductive immobilization of alkaline Cr(VI)-contaminated soil.

Chemosphere(2023)

引用 2|浏览3
暂无评分
摘要
Effective remediation of Cr(VI)-contaminated soil with strong alkalinity and high Cr(VI) concentration is a severe challenge. Herein, a proton-buffering montmorillonite-supported sulfidated nano zerovalent iron (nFeS/Fe0@H-Mt) was developed for remediation of alkaline Cr(VI)-contaminated soil. The reductive efficiencies of water-soluble Cr(VI) reached 99.7%, 99.3% and 99.8% in three tested soils with initial concentrations of 439.6, 3307.5 and 4626.7 mg kg-1, respectively, after 15 d of nFeS/Fe0@H-Mt treatment. Further speciation analyses demonstrated most available Cr species (exchangeable and carbonate-bound Cr) were transformed into more stable Cr species. The leachable Cr(VI) and total Cr obtained by toxicity leaching procedures decreased to extremely low levels and maintained long-term stability for 120 d. Such superior reductive immobilization performance of FeS/Fe0@H-Mt was attributed to the synergistic effect of sulfidated nano zerovalent iron and proton-buffering montmorillonite, which induced the coordination of proton donation and electron transfer. The proton-buffering montmorillonite (H-Mt) could prevent the aggregation of nanoparticles and provide protons to accelerate the corrosion of Fe0. In addition, the FeS component improved electron selectivity and facilitated electron transfer of Fe0 to Cr(VI). Our study demonstrated that the coordination of proton donation and electron transfer significantly enhanced the Cr(VI) reduction under the alkaline condition thus leading to effective remediation of alkaline Cr(VI)-contaminated soil.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要