Mandarin Electro-Laryngeal Speech Enhancement Using Cycle-Consistent Generative Adversarial Networks

APPLIED SCIENCES-BASEL(2023)

引用 0|浏览1
暂无评分
摘要
Electro-laryngeal (EL) speech has poor intelligibility and naturalness, which hampers the popular use of the electro-larynx. Voice conversion (VC) can enhance EL speech. However, if the EL speech to be enhanced is with complicated tone variation rules in Mandarin, the enhancement will be less effective. This is because the source speech (Mandarin EL speech) and the target speech (normal speech) are not strictly parallel. We propose using cycle-consistent generative adversarial networks (CycleGAN, a parallel-free VC framework) to enhance continuous Mandarin EL speech, which can solve the above problem. In the proposed framework, the generator is designed based on the neural networks of a 2D-Conformer-1D-Transformer-2D-Conformer. Then, we used Mel-Spectrogram instead of traditional acoustic features (fundamental frequency, Mel-Cepstrum parameters and aperiodicity parameters). At last, we converted the enhanced Mel-Spectrogram into waveform signals using WaveNet. We undertook both subjective and objective tests to evaluate the proposed approach. Compared with traditional approaches to enhance continuous Mandarin EL speech with variable tone (the average tone accuracy being 71.59% and average word error rate being 10.85%), our framework increases the average tone accuracy by 12.12% and reduces the average errors of word perception by 9.15%. Compared with the approaches towards continuous Mandarin EL speech with fixed tone (the average tone accuracy being 29.89% and the average word error rate being 10.74%), our framework increases the average tone accuracy by 42.38% and reduces the average errors of word perception by 8.59%. Our proposed framework can effectively address the problem that the source and target speech are not strictly parallel. The intelligibility and naturalness of Mandarin EL speech have been further improved.
更多
查看译文
关键词
Mandarin electro-laryngeal speech,CycleGAN,WaveNet
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要