Atomistic Origins of Reversible Noncatalytic Gas-Solid Interfacial Reactions.

Journal of the American Chemical Society(2023)

引用 1|浏览38
暂无评分
摘要
Noncatalytic gas-solid reactions are a large group of heterogeneous reactions that are usually assumed to occur irreversibly because of the strong driving force to favor the forward direction toward the product formation. Using the example of Ni oxidation into NiO with CO, herein, we demonstrate the existence of the reverse element that results in the NiO reduction from the countering effect of the gaseous product of CO. Using in situ electron microscopy observations and atomistic modeling, we show that the oxidation process occurs via preferential CO adsorption along step edges that results in step-flow growth of NiO layers, and the presence of Ni atoms on the flat NiO surface promotes the nucleation of NiO layers. Simultaneously, the NiO reduction happens via preferential step-edge adsorption of CO that leads to the receding motion of atomic steps, and the presence of Ni vacancies in the NiO surface facilitates the CO-adsorption-induced surface pitting. Temperature and CO pressure effect maps are constructed to illustrate the spatiotemporal dynamics of the competing NiO redox reactions. These results demonstrate the rich gas-solid surface reaction dynamics induced by the coexisting forward and reverse reaction elements and have practical applicability in manipulating gas-solid reactions via controlling the gas environment or atomic structure of the solid surface to steer the reaction toward the desired direction.
更多
查看译文
关键词
reversible noncatalytic gas–solid,reactions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要