Sphingosine-1-phosphate receptor 2 plays a dual role depending on the stage of cell differentiation in renal epithelial cells.

Life sciences(2023)

引用 0|浏览4
暂无评分
摘要
Epithelial renal cells have the ability to adopt different cellular phenotypes through epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). These processes are increasingly recognized as important repair factors following acute renal tubular injury. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid with impact on proliferation, growth, migration, and differentiation which has significant implication in various diseases including cancer and kidney fibrosis. Here we demonstrated that S1P can exert by activating S1P receptor 2 (S1PR2) different functions depending on the stage of cell differentiation. We observed that the differences in the migratory profile of Madin-Darby canine kidney (MDCK) cells depend both on their stage of cell differentiation and the activity of S1PR2, a receptor that can either promote or inhibit the migratory process. Meanwhile in non-differentiated cells S1PR2 activation avoids migration, it is essential on fully differentiated cells. This is the first time that an antagonist effect of S1PR2 was reported for the same cell type. Moreover, in fully differentiated cells, S1PR2 activation is crucial for the progression of EMT - characterized by adherent junctions disassembly, β-catenin and SNAI2 nuclear translocation and vimentin expression- and depends on ERK 1/2 activation and nuclear translocation. These findings provide a new perspective about the different S1PR2 functions depending on the stage of cell differentiation that can be critical to the modulation of renal epithelial cell plasticity, potentially paving the way for innovative research with pathophysiologic relevance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要