Enhancing Robustness in Federated Learning by Supervised Anomaly Detection

ICPR(2022)

引用 0|浏览17
暂无评分
摘要
Recent years have seen the increasing attention and popularity of federated learning (FL), a distributed learning framework for privacy and data security. However, by its fundamental design, federated learning is inherently vulnerable to model poisoning attacks: a malicious client may submit the local updates to influence the weights of the global model. Therefore, detecting malicious clients against model poisoning attacks in federated learning is useful in safety-critical tasks.However, existing methods either fail to analyze potential malicious data or are computationally restrictive. To overcome these weaknesses, we propose a robust federated learning method where the central server learns a supervised anomaly detector using adversarial data generated from a variety of state-of-the-art poisoning attacks. The key idea of this powerful anomaly detector lies in a comprehensive understanding of the benign update through distinguishing it from the diverse malicious ones. The anomaly detector would then be leveraged in the process of federated learning to automate the removal of malicious updates (even from unforeseen attacks).Through extensive experiments, we demonstrate its effectiveness against backdoor attacks, where the attackers inject adversarial triggers such that the global model will make incorrect predictions on the poisoned samples. We have verified that our method can achieve 99.0% detection AUC scores while enjoying longevity as the model converges. Our method has also shown significant advantages over existing robust federated learning methods in all settings. Furthermore, our method can be easily generalized to incorporate newly-developed poisoning attacks, thus accommodating ever-changing adversarial learning environments.
更多
查看译文
关键词
federated learning,robustness,detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要