Cyanopolyyne chemistry in the L1544 prestellar core: new insights from GBT observations

arxiv(2023)

引用 2|浏览33
暂无评分
摘要
We report a comprehensive study of the cyanopolyyne chemistry in the prototypical prestellar core L1544. Using the 100m Robert C. Byrd Green Bank Telescope (GBT) we observe 3 emission lines of HC$_3$N, 9 lines of HC$_5$N, 5 lines of HC$_7$N, and 9 lines of HC$_9$N. HC$_9$N is detected for the first time towards the source. The high spectral resolution ($\sim$ 0.05 km s$^{-1}$) reveals double-peak spectral line profiles with the redshifted peak a factor 3-5 brighter. Resolved maps of the core in other molecular tracers indicates that the southern region is redshifted. Therefore, the bulk of the cyanopolyyne emission is likely associated with the southern region of the core, where free carbon atoms are available to form long chains, thanks to the more efficient illumination of the interstellar field radiation. We perform a simultaneous modelling of the HC$_5$N, HC$_7$N, and HC$_9$N lines, to investigate the origin of the emission. To enable this analysis, we performed new calculation of the collisional coefficients. The simultaneous fitting indicates a gas kinetic temperature of 5--12 K, a source size of 80$\arcsec$, and a gas density larger than 100 cm$^{-3}$. The HC$_5$N:HC$_7$N:HC$_9$N abundance ratios measured in L1544 are about 1:6:4. We compare our observations with those towards the the well-studied starless core TMC-1 and with the available measurements in different star-forming regions. The comparison suggests that a complex carbon chain chemistry is active in other sources and it is related to the presence of free gaseous carbon. Finally, we discuss the possible formation and destruction routes in the light of the new observations.
更多
查看译文
关键词
Astrochemistry,Star formation,Interstellar medium,Interstellar molecules,Chemical abundances
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要