Microdosing Sprint Distribution as an Alternative to Achieve Better Sprint Performance in Field Hockey Players.

Sensors(2023)

引用 2|浏览5
暂无评分
摘要
Introduction: The implementation of optimal sprint training volume is a relevant component of team sport performance. This study aimed to compare the efficiency and effectiveness of two different configurations of within-season training load distribution on sprint performance over 6 weeks. Methods: Twenty male professional FH players participated in the study. Players were conveniently assigned to two groups: the experimental group (MG; n = 11; applying the microdosing training methodology) and the control group (TG; n = 9; traditional training, with players being selected by the national team). Sprint performance was evaluated through 20 m sprint time (T20) m and horizontal force−velocity profile (HFVP) tests before (Pre) and after (Post) intervention. Both measurements were separated by a period of 6 weeks. The specific sprint training program was performed for each group (for vs. two weekly sessions for MG and TG, respectively) attempting to influence the full spectrum of the F-V relationship. Results: Conditional demands analysis (matches and training sessions) showed no significant differences between the groups during the intervention period (p > 0.05). No significant between-group differences were found at Pre or Post for any sprint-related performance (p > 0.05). Nevertheless, intra-group analysis revealed significant differences in F0, Pmax, RFmean at 10 m and every achieved time for distances ranging from 5 to 25 m for MG (p < 0.05). Such changes in mechanical capabilities and sprint performance were characterized by an increase in stride length and a decrease in stride frequency during the maximal velocity phase (p < 0.05). Conclusion: Implementing strategies such as microdosed training load distribution appears to be an effective and efficient alternative for sprint training in team sports such as hockey.
更多
查看译文
关键词
field hockey,microdosing,sprint performance,team sports,training load distribution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要