Advances in Low Pt Loading Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells.

Molecules (Basel, Switzerland)(2023)

引用 1|浏览16
暂无评分
摘要
Hydrogen has the potential to be one of the solutions that can address environmental pollution and greenhouse emissions from traditional fossil fuels. However, high costs hinder its large-scale commercialization, particularly for enabling devices such as proton exchange membrane fuel cells (PEMFCs). The precious metal Pt is indispensable in boosting the oxygen reduction reaction (ORR) in cathode electrocatalysts from the most crucial component, i.e., the membrane electrode assembly (MEA). MEAs account for a considerable amount of the entire cost of PEMFCs. To address these bottlenecks, researchers either increase Pt utilization efficiency or produce MEAs with enhanced performance but less Pt. Only a few reviews that explain the approaches are available. This review summarizes advances in designing nanocatalysts and optimizing the catalyst layer structure to achieve low-Pt loading MEAs. Different strategies and their corresponding effectiveness, e.g., performance in half-cells or MEA, are summarized and compared. Finally, future directions are discussed and proposed, aiming at affordable, highly active, and durable PEMFCs.
更多
查看译文
关键词
electrocatalysts,membrane electrode assembly,nanocatalysts,oxygen reduction reaction,proton exchange membrane fuel cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要