In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in -Functional Nanopolymer Films

RESEARCH(2023)

引用 0|浏览0
暂无评分
摘要
In situ self-assembly of semiconducting emitters into multilayer cracks is a significant solution-processing method to fabricate organic high -Q lasers. However, it is still difficult to realize from conventional conjugated polymers. Herein, we create the molecular super-hindrance-etching technology, based on the pi-functional nanopolymer PG-Cz, to modulate multilayer cracks applied in organic single-component random lasers. Massive interface cracks are formed by promoting interchain disentanglement with the super-steric hindrance effect of pi-interrupted main chains, and multilayer morphologies with photonic-crystal-like ordering are also generated simultaneously during the drop-casting method. Meanwhile, the enhancement of quantum yields on micrometer-thick films (Phi = 40% to 50%) ensures high-efficient and ultrastable deep-blue emission. Furthermore, a deep-blue random lasing is achieved with narrow linewidths similar to 0.08 nm and high-quality factors Q approximate to 5,500 to 6,200. These findings will offer promising pathways of organic pi-nanopolymers for the simplification of solution processes applied in lasing devices and wearable photonics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要