Dynamic Interplay between O-2 Availability, Growth Rates, and the Transcriptome of Yarrowia lipolytica

Fermentation(2023)

引用 0|浏览0
暂无评分
摘要
Industrial-sized fermenters differ from the laboratory environment in which bioprocess development initially took place. One of the issues that can lead to reduced productivity on a large scale or even early termination of the process is the presence of bioreactor heterogeneities. This work proposes and adopts a design-build-test-learn-type workflow that estimates the substrate, oxygen, and resulting growth heterogeneities through a compartmental modelling approach and maps Yarrowia lipolytica-specific behavior in this relevant range of conditions. The results indicate that at a growth rate of 0.1 h(-1), the largest simulated volume (90 m(3)) reached partial oxygen limitation. Throughout the fed-batch, the cells experienced dissolved oxygen values from 0 to 75% and grew at rates of 0 to 0.2 h(-1). These simulated large-scale conditions were tested in small-scale cultivations, which elucidated a transcriptome with a strong downregulation of various transporter and central carbon metabolism genes during oxygen limitation. The relation between oxygen availability and differential gene expression was dynamic and did not show a simple on-off behavior. This indicates that Y. lipolytica can differentiate between different available oxygen concentrations and adjust its transcription accordingly. The workflow presented can be used for Y. lipolytica-based strain engineering, thereby accelerating bioprocess development.
更多
查看译文
关键词
compartmental modelling,metabolic regimes,oxygen limitation,scale-down,transcriptome response
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要