The longevity-associated BPIFB4 gene supports cardiac function and vascularization in aging cardiomyopathy

Cardiovascular Research(2023)

引用 3|浏览20
暂无评分
摘要
Abstract Aims The aging heart naturally incurs a progressive decline in function and perfusion that available treatments cannot halt. However, some exceptional individuals maintain good health until the very late stage of their life due to favourable gene-environment interaction. We have previously shown that carriers of a longevity-associated variant (LAV) of the BPIFB4 gene enjoy prolonged health spans and lesser cardiovascular complications. Moreover, supplementation of LAV-BPIFB4 via an adeno-associated viral vector improves cardiovascular performance in limb ischemia, atherosclerosis, and diabetes models. Here, we asked if the LAV-BPIFB4 gene could address the unmet therapeutic need to delay the heart’s spontaneous aging. Methods and Results Immunohistological studies showed a remarkable reduction in vessel coverage by pericytes in failing hearts explanted from elderly patients. This defect was attenuated in patients carrying the homozygous LAV-BPIFB4 genotype. Moreover, pericytes isolated from older hearts showed low levels of BPIFB4, depressed pro-angiogenic activity, and loss of ribosome biogenesis. LAV-BPIFB4 supplementation restored pericyte function and pericyte-endothelial cell interactions through a mechanism involving the nucleolar protein nucleolin. Conversely, BPIFB4 silencing in normal pericytes mimed the heart failure pericytes. Finally, gene therapy with LAV-BPIFB4 prevented cardiac deterioration in middle-aged mice and rescued cardiac function and myocardial perfusion in older mice by improving microvasculature density and pericyte coverage. Conclusions We report the success of the LAV-BPIFB4 gene/protein in improving homeostatic processes in the heart’s aging. These findings open to using LAV-BPIFB4 to reverse the decline of heart performance in older people.
更多
查看译文
关键词
Ageing,Angiogenesis,Myocardial fibrosis,Nucleolin,Perivascular cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要