Gradient Coil Design Method Specifically for Permanent-Magnet-Type Low Field Portable MRI Brain Scanner

IEEE Transactions on Instrumentation and Measurement(2023)

引用 2|浏览9
暂无评分
摘要
Ferromagnetic structures, particularly the anti-eddy plate, in a bi-planar permanent-magnet-type low-field (0.05 T) magnetic resonance imaging (MRI) brain scanner can distort the gradient field in the target region. This study aims to provide a new gradient coil design method that reduces ferromagnetic influences on gradient field linearity. Thus, a simplified model of electromagnetic (EM) structures of the permanent-magnet-type MRI scanners was established. By using precise analytical proof, the anti-eddy plate was reduced to a homogeneous magnetic plate. The overall effects of the EM structures, which can be represented by bi-planar magnetic plates, were evaluated. In sequence, the image magnetic dipole was first introduced to show the effects of anti-eddy plates were added to the conventional equivalent magnetic dipole (EMD) approach. A novel equivalent image magnetic dipole (EIMD) method was proposed to build the gradient coil pattern. The effect of ferromagnetic materials was predicted throughout the gradient coil design phase using the proposed method, and a high-linear gradient field was generated under real working conditions. The computational and experimental results showed that the gradient coil was linear when ferromagnetic structures were present. The effectiveness of the proposed method was demonstrated by comparing T1-weighted images of the conventional method to those of the proposed method. The proposed method reduced image distortion caused by nearby EM structures in bi-planar permanent-magnet-type low-field MRI systems and provided an effective and concise solution for gradient coil designs.
更多
查看译文
关键词
Brain imaging,inverse problems,magnetic resonance imaging (MRI),medical diagnosis,optimization methods
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要