In situ photo-crosslinked adhesive hydrogel loaded with mesenchymal stem cell-derived extracellular vesicles promotes diabetic wound healing.

Journal of materials chemistry. B(2023)

引用 5|浏览12
暂无评分
摘要
The delayed healing of diabetic wounds is directly affected by the disturbance of wound microenvironment, resulting from persistent inflammation, insufficient angiogenesis, and impaired cell functions. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) showed considerable therapeutic potential in diabetic wound healing. However, the low retention rate of MSC-EVs at wound sites hampers their efficacy. For skin wounds exposed to the outer environment, using a hydrogel with tissue adhesiveness under a moist wound condition is a promising strategy for wound healing. In this study, we modified methacryloyl-modified gelatin (GelMA) hydrogel with catechol motifs of dopamine to fabricate a GelMA-dopamine hydrogel. EVs isolated from MSCs were applied in the synthesized GelMA-dopamine hydrogel to prepare a GelMA-dopamine-EV hydrogel. The results demonstrated that the newly formed GelMA-dopamine hydrogel possessed improved properties of softness, adhesiveness, and absorptive capacity, as well as high biocompatibility in the working concentration (15% w/v). In addition, MSC-EVs were verified to promote cell migration and angiogenesis . In the skin wound model of diabetic rats, the GelMA-dopamine-EV hydrogel exerted prominent wound healing efficacy estimated by collagen deposition, skin appendage regeneration, and the expression of IL-6, CD31, and TGF-β. In conclusion, this combination of MSC-EVs and the modified hydrogel not only accelerates wound closure but also promotes skin structure normalization by rescuing the homeostasis of the healing microenvironment of diabetic wounds, which provides a potential approach for the treatment of diabetic wounds.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要