Simulation of printed-on-fabric assemblies

Symposium on Computational Fabrication (SCF)(2022)

引用 1|浏览12
暂无评分
摘要
Printing-on-fabric is an affordable and practical method for creating self-actuated deployable surfaces: thin strips of plastic are deposited on top of a pre-stretched piece of fabric using a commodity 3D printer; the structure, once released, morphs to a programmed 3D shape. Several physics-aware modeling tools have recently been proposed to help designing such surfaces. However, existing simulators do not capture well all the deformations these structures can exhibit. In this work, we propose a new model for simulating printed-on-fabric composites based on a tailored bilayer formulation for modeling plastic-on-top-of-fabric strips, and an extended Saint-Venant–Kirchhoff material law for modeling the surrounding stretchy fabric. We show how to calibrate our model through a series of standard experiments. Finally, we demonstrate the improved accuracy of our simulator by conducting various tests.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要