In Vitro Inhibition of SARS-CoV-2 Infection by Bromhexine hydrochloride

biorxiv(2022)

引用 0|浏览3
暂无评分
摘要
The world enduring the SARS CoV-2 pandemic, and although extensive research has been conducted on the issue, only a few antivirals have been approved up to date to treat patients with COVID-19. Bromhexine hydrochloride was previously identified as a potent inhibitor of TMPRSS2, an essential protease for ACE-2 virus receptor interactions. In the present study, we investigated whether bromhexine treatment could reduce SARS CoV-2 replication in vitro. To evaluates the effectiveness of bromhexine against SARS COV-2 infection, viral load was measured using Caco-2 cell lines that express TMPRSS2. Our molecular docking results indicate that bromhexine displays an affinity with the active site of TMPRSS2. The drug was able to significantly inhibit SARS CoV-2, both parental and P1 variant strains, infection in the Caco-2 cell line, reducing about 40% of SARS-CoV-2 entrance, and about 90% of viral progeny in the supernatant 48h post-infection. Furthermore, bromhexine did not exhibit any direct virucidal activity on SARS CoV-2. In conclusion, bromhexine hydrochloride efficiently disrupts SARS CoV-2 infection in vitro and has the potential to become an effective antiviral agent in COVID-19 treatment. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要