Efficient single-scattering look-up table for lidar and polarimeter water cloud studies.

Optics letters(2023)

引用 1|浏览43
暂无评分
摘要
Combined lidar and polarimeter retrievals of aerosol, cloud, and ocean microphysical properties involve single-scattering cloud calculations that are time consuming. We create a look-up table to speed up these calculations for water droplets in the atmosphere. In our new Lorenz-Mie look-up table we tabulate the light scattering by an ensemble of homogeneous isotropic spheres at wavelengths starting from 0.35 µm. The look-up table covers liquid water cloud particles with radii in the range of 0.001-500 µm while gaining an increase of up to 10 in computational speed. The covered complex refractive indices range from 1.25 to 1.36 for the real part and from 0 to 0.001 for the imaginary part. We show that we can precisely compute inherent optical properties for the particle size distributions ranging up to 100 µm for the effective radius and up to 0.6 for the effective variance. We test wavelengths from 0.35 to 2.3 µm and find that the elements of the normalized scattering matrix as well as the asymmetry parameter, the absorption, backscatter, extinction, and scattering coefficients are precise to within 1% for 96.7%-100% of cases depending on the inherent optical property. We also provide an example of using the look-up table with in situ measurements to determine agreement with remote sensing. The table together with C++, Fortran, MATLAB, and Python codes to interpolate the complex refractive index and apply different particle size distributions are freely available online.
更多
查看译文
关键词
lidar,cloud,single-scattering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要