Resonance Fluorescence of a Chiral Artificial Atom

PHYSICAL REVIEW X(2023)

引用 1|浏览6
暂无评分
摘要
We demonstrate a superconducting artificial atom with strong unidirectional coupling to a microwave photonic waveguide. Our artificial atom is realized by coupling a transmon qubit to the waveguide at two spatially separated points with time-modulated interactions. Direction-sensitive interference arising from the parametric couplings in our scheme results in a nonreciprocal response, where we measure a forward/backward ratio of spontaneous emission exceeding 100. We verify the quantum nonlinear behavior of this artificial chiral atom by measuring the resonance fluorescence spectrum under a strong resonant drive and observing well-resolved Mollow triplets. Further, we demonstrate chirality for the second transition energy of the artificial atom and control it with a pulse sequence to realize a qubit-state-dependent nonreciprocal phase on itinerant photons. Our demonstration puts forth a superconducting hardware platform for the scalable realization of several key functionalities pursued within the paradigm of chiral quantum optics, including quantum networks with all-to-all connectivity, driven-dissipative stabilization of many-body entanglement, and the generation of complex nonclassical states of light.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要