Optimization of Tree-like Support for Titanium Overhang Structures Produced via Electron Beam Melting

SUSTAINABILITY(2022)

引用 0|浏览3
暂无评分
摘要
Support structures play a significant role in all additive manufacturing (AM) processes. The type of supports, as well as their size, placement, and other characteristics, greatly determine how effectively and efficiently the AM process works. In order to reduce the amount of material and post-processing requirements, tree-like support structures are revolutionary support structures that have so far been employed in polymer AM and have shown good performance. However, they have not yet been investigated for metal AM processes. Therefore, this study aims to propose and optimize the tree-like support structures for additively manufactured metal (Ti6Al4V) overhangs. The overhang specimens are fabricated using Electron Beam Melting (EBM) with a variety of design and process parameters. The effect of design and process structure parameters on the performance of the support is evaluated and optimized experimentally. MOGA-ll is used to perform multi-objective optimization. The results have shown the feasibility of using tree-like support structures in metal AM. The findings of this study demonstrate how important it is to choose the proper minimum distance between rows in order to reduce support volume and support removal time. Furthermore, the most crucial factors in limiting the overhang deviation are the beam current and beam scanning speed. Additionally, the data demonstrate that lowering the beam current and raising the beam scanning speed significantly reduce deformation. Consequently, it is critical to find the right balance between beam current, beam scanning speed, minimum spacing between rows, and branch top diameters that can produce the lowest support volume, lowest support removal time, and least amount of deformation.
更多
查看译文
关键词
additive manufacturing,overhang structures,tree support,electron beam melting,titanium alloy,optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要