Role of Bifunctional Ru/Acid Catalysts in the Selective Hydrocracking of Polyethylene and Polypropylene Waste to Liquid Hydrocarbons

ACS CATALYSIS(2022)

引用 15|浏览11
暂无评分
摘要
Hydrogenolysis of C-C bonds over Ru-based catalysts has emerged as a deconstruction strategy to convert single-use polyolefin waste to liquid alkanes at relatively mild conditions, but this approach exhibits limitations, including methane formation resulting from terminal C-C bond scission. In this study, a variety of catalysts were investigated for the reductive deconstruction of polyethylene (PE) and polypropylene (PP) to identify supports that promote nonterminal C-C bond scission. We found that Ru nanoparticles supported on Bronstedacidic zeolites with the faujasite (FAU) and Beta (BEA) topologies were highly active for the cleavage of C-C bonds in PE and PP, exhibiting improved liquid yields and suppressed methane formation. For the deconstruction of PE, supporting ruthenium nanoparticles (5 wt %) on FAU increased the yields of liquid alkanes to 67% compared to 33% over an inert silica support (5 wt % Ru/SiO2) at 200 degrees C, 16 h, under 30 bar of H2. A dramatic selectivity enhancement toward liquid hydrocarbons was also observed for PP over Ru/FAU and Ru/BEA compared to Ru/SiO2. To understand the origin of this selectivity improvement, a combination of ex situ and operando characterization techniques were used to reveal that both catalyst structure and acidity play key roles in PE and PP conversion. Operando X-ray absorption spectroscopy studies with model polyolefins over Ru-supported catalysts with varying acidity levels revealed that the local chemical environment of Ru[0] during the reaction is consistent across multiple acidic supports, although the onset of reduction during synthesis of the nanoparticles varies across different supports. These results, combined with reactivity data, demonstrate the importance of the acid-noble metal cooperativity in promoting selective C-C bond scission toward liquid alkanes that shifts the mechanism from hydrogenolysis to ideal hydrocracking.
更多
查看译文
关键词
plastic upcycling, hydrogenolysis, hydrocracking, polypropylene, polyethylene, depolymerization, ruthenium, bifunctional catalyst
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要