Identification of DNA methylation and genetic alteration simultaneously from a single blood biopsy

Genes & genomics(2022)

引用 2|浏览11
暂无评分
摘要
Background High-throughput sequencing of blood cell-free DNA (cfDNA) techniques offer an opportunity to characterize and monitor cancer rapidly in a non-invasive and real-time manner. Nonetheless, there lacks a tool within therapeutic arsenal to identify multi-omics alterations simultaneously from a single biopsy. In current times, bisulfite-based sequencing detects 5mC and 5hmC at single-base resolution is the golden standard of DNA methylation, while the degradation of DNA and biased sequencing data are the problems of this method. Objective To identify the consistency analysis of methylation and genetic variation with single library, we presented a platform detecting multi-omics data simultaneously from a single blood biopsy using bisulfite-free method of genomic methylation sequencing (GM-seq) mediated by TET enzyme. Methods We detected methylomic and genetic changes simultaneously from a single blood biopsy in NA12878 and randomly chose ten blood biopsies from colorectal cancer or lung cancer patients to validate the ability of GM-seq. Results Similar cytosine methylation level between whole genome bisulfite sequencing (WGBS) and GM-seq were identified in NA12878. Moreover, longer insert size, CpGs coverage and GC distribution were outperformed than WGBS. In addition, the comparison of the single nucleotide polymorphism (SNP), insertion-deletion (Indel) and copy number variation (CNV) in NA12878 or ctDNA from liver cancer between GM-seq and whole genome sequencing (WGS) show a good consistency, indicating that this method is feasible for detecting genetic variation in blood. Conclusion In conclusion, our work demonstrated a method for identification of the methylated modification and genetic variations simultaneously from a single blood biopsy.
更多
查看译文
关键词
Blood biopsy,Cell-free DNA (cfDNA),DNA methylation,Genetic variation,GM-seq
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要