Robust, fire-resistant, and thermal-stable SiZrNOC nanofiber membranes with amorphous microstructure for high-temperature thermal superinsulation

Journal of Advanced Ceramics(2023)

引用 4|浏览6
暂无评分
摘要
Ceramic nanofibers with robust mechanical properties, high-temperature resistance, and superior thermal insulation performance are promising thermal insulators used under extreme conditions. However, developing of ceramic fibers with both low solid thermal conductivity (λs) and low infrared radiation thermal conductivity (λr) is still a great challenge. Herein, according to the Ioffe–Regel limit theory, we report a novel SiZrNOC nanofiber membrane (NFM) with a typically amorphous structure by combining the electrospinning method and high-temperature pyrolysis technique in a NH3 atmosphere. The prepared SiZrNOC NFM has a high tensile strength (1.98±0.09 MPa), excellent thermal stability (1100 ℃ in air), and superior thermal insulation performance. The thermal conductivity of SiZrNOC NFM was 0.112 W·m−1·K−1 at 1000 ℃, which is obviously lower than that of the traditional ceramic fiber membranes (> 0.2 W·m−1·K−1 at 1000 ℃). In addition, the prepared SiZrNOC NFM-reinforced SiO2 aerogel composites (SiZrNOCf/SiO2 ACs) exhibited ultralow thermal conductivity of 0.044 W·m−1·K−1 at 1000 ℃, which was the lowest value for SiO2-based aerogel composites ever reported. Such superior thermal insulation performance of SiZrNOC NFMs was mainly due to significant decreasing of solid heat conduction and thermal radiation by the fancy amorphous microstructure and high infrared shielding compositions. This work not only provides a promising high-temperature thermal insulator, but also offers a novel route to develop other high-performance thermal insulating materials.
更多
查看译文
关键词
amorphous microstructure,sizrnoc nanofiber,thermal stability,thermal insulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要