Kinematic Modeling and Jacobian-Based Control of the COAST Guidewire Robot

IEEE Transactions on Medical Robotics and Bionics(2022)

引用 6|浏览23
暂无评分
摘要
Manual guidewire navigation and placement for minimally invasive surgeries suffer from technical challenges due to imprecise tip motion control to traverse highly tortuous vasculature. Robotically steerable guidewires can address these challenges by actuating a compliant tip through multiple degrees-of-freedom for maneuvering through vascular pathways. In this paper, we detail the kinematic mapping of a CO axially A ligned ST eerable (COAST) guidewire robot that is capable of executing follow-the-leader motion in three dimensional vascular pathways. We also develop an analytical Jacobian model to perform velocity kinematics for the robot and finally, we implement Jacobian-based control to demonstrate follow-the-leader motion of the guidewire in free space, within 3D-printed phantoms, and within ex vivo animal vasculature.
更多
查看译文
关键词
Medical robotics,open loop systems,robot kinematics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要