Thermodynamic bounds on ultrasensitivity in covalent switching

arxiv(2022)

引用 1|浏览3
暂无评分
摘要
Switch-like motifs are among the basic building blocks of biochemical networks. A common motif that can serve as an ultrasensitive switch consists of two enzymes acting antagonistically on a substrate, one making and the other removing a covalent modification. To work as a switch, such covalent modification cycles must be held out of thermodynamic equilibrium by continuous expenditure of energy. Here, we exploit the linear framework for timescale separation to establish tight bounds on the performance of any covalent-modification switch, in terms of the chemical potential difference driving the cycle. The bounds apply to arbitrary enzyme mechanisms, not just Michaelis-Menten, with arbitrary rate constants, and thereby reflect fundamental physical constraints on covalent switching.
更多
查看译文
关键词
covalent,thermodynamic bounds,ultrasensitivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要