Overcoming leakage in quantum error correction

Kevin C. Miao,Matt Mcewen,Juan Atalaya,Dvir Kafri,Leonid P. Pryadko,Andreas Bengtsson,Alex Opremcak,Kevin J. Satzinger,Zijun Chen,Paul V. Klimov,Chris Quintana,Rajeev Acharya,Kyle Anderson,Markus Ansmann,Frank Arute,Kunal Arya,Abraham Asfaw,Joseph C. Bardin,Alexandre Bourassa,Jenna Bovaird,Leon Brill,Bob B. Buckley,David A. Buell,Tim Burger,Brian Burkett,Nicholas Bushnell,Juan Campero,Ben Chiaro,Roberto Collins,Paul Conner,Alexander L. Crook,Ben Curtin,Dripto M. Debroy, Sean Demura,Andrew Dunsworth,Catherine Erickson,Reza Fatemi,Vinicius S. Ferreira,Leslie Flores Burgos,Ebrahim Forati,Austin G. Fowler,Brooks Foxen,Gonzalo Garcia,William Giang,Craig Gidney,Marissa Giustina,Raja Gosula,Alejandro Grajales Dau,Jonathan A. Gross,Michael C. Hamilton,Sean D. Harrington,Paula Heu,Jeremy Hilton,Markus R. Hoffmann,Sabrina Hong,Trent Huang,Ashley Huff,Justin Iveland,Evan Jeffrey,Zhang Jiang,Cody Jones,Julian Kelly,Seon Kim,Fedor Kostritsa,John Mark Kreikebaum,David Landhuis,Pavel Laptev,Lily Laws,Kenny Lee,Brian J. Lester,Alexander T. Lill,Wayne Liu,Aditya Locharla,Erik Lucero,Steven Martin,Anthony Megrant,Xiao Mi,Shirin Montazeri,Alexis Morvan,Ofer Naaman,Matthew Neeley,Charles Neill,Ani Nersisyan,Michael Newman, Jiun How Ng,Anthony Nguyen,Murray Nguyen,Rebecca Potter,Charles Rocque,Pedram Roushan,Kannan Sankaragomathi, Henry F. Schurkus,Christopher Schuster,Michael J. Shearn,Aaron Shorter,Noah Shutty, Vladimir Shvarts,Jindra Skruzny,W. Clarke Smith,George Sterling,Marco Szalay, Douglas Thor,Alfredo Torres,Theodore White,Bryan W. K. Woo,Z. Jamie Yao,Ping Yeh,Juhwan Yoo,Grayson Young,Adam Zalcman,Ningfeng Zhu,Nicholas Zobrist,Hartmut Neven,Vadim Smelyanskiy, Andre Petukhov,Alexander N. Korotkov,Daniel Sank,Yu Chen

NATURE PHYSICS(2023)

引用 0|浏览64
暂无评分
摘要
The leakage of quantum information out of the two computational states of a qubit into other energy states represents a major challenge for quantum error correction. During the operation of an error-corrected algorithm, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of the logical error with scale, thus challenging the feasibility of quantum error correction as a path towards fault-tolerant quantum computation. Here, we demonstrate a distance-3 surface code and distance-21 bit-flip code on a quantum processor for which leakage is removed from all qubits in each cycle. This shortens the lifetime of leakage and curtails its ability to spread and induce correlated errors. We report a tenfold reduction in the steady-state leakage population of the data qubits encoding the logical state and an average leakage population of less than 1 x 10-3 throughout the entire device. Our leakage removal process efficiently returns the system back to the computational basis. Adding it to a code circuit would prevent leakage from inducing correlated error across cycles. With this demonstration that leakage can be contained, we have resolved a key challenge for practical quantum error correction at scale. Physical realizations of qubits are often vulnerable to leakage errors, where the system ends up outside the basis used to store quantum information. A leakage removal protocol can suppress the impact of leakage on quantum error-correcting codes.
更多
查看译文
关键词
quantum,leakage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要