Genomic imbalance modulates transposable element expression in maize

Plant Communications(2023)

引用 3|浏览24
暂无评分
摘要
Genomic imbalance refers to the more severe phenotypic consequences of changing part of a chromosome compared with the whole genome set. Previous genome imbalance studies in maize have identified prevalent inverse modulation of genes on the unvaried chromosomes (trans) with both the addition or subtraction of chromosome arms. Transposable elements (TEs) comprise a substantial fraction of the genome, and their reaction to genomic imbalance is therefore of interest. Here, we analyzed TE expression using RNA-seq data of aneuploidy and ploidy series and found that most aneuploidies showed an inverse modulation of TEs, but reductions in monosomy and increases in disomy and trisomy were also common. By contrast, the ploidy series showed little TE modulation. The modulation of TEs and genes in the same experimental group were compared, and TEs showed greater modulation than genes, especially in disomy. Class I and II TEs were differentially modulated in most aneuploidies, and some superfamilies in each TE class also showed differential modulation. Finally, the significantly upregulated TEs in three disomies (TB-7Lb, TB9Lc, and TB-10L19) did not increase the proportion of adjacent gene expression when compared with non-differentially expressed TEs, indicating that modulations of TEs do not compound the effect on genes. These results suggest that the prevalent inverse TE modulation in aneuploidy results from stoichiometric upset of the regulatory machinery used by TEs, similar to the response of core genes to genomic imbalance.
更多
查看译文
关键词
genome imbalance,transposable element expression,aneuploidy,polyploidy,Class I and II TEs
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要