Designing an improved interface in graphene/polymer composites through machine learning

American Society for Composites 2022(2022)

引用 0|浏览8
暂无评分
摘要
The matrix-reinforcement interface has been studied extensively to enhance the performance of polymer matrix composites (PMCs). One commonly practiced approach is functionalization of the reinforcement, which significantly improves the interfacial interaction. A molecular dynamics (MD) and machine learning (ML) workflow is proposed to identify the optimal functionalization parameters that result in improved mechanical performance of a 3-layer graphene nanoplatelet (GNP)/ bismaleimide (BMI) nanocomposite. MD is used to generate the training set for a graph convolutional neural network (GCN). This article reports the MD methodology and an example mechanical response from a pull-out simulation. Upcoming work in the proposed MD-ML workflow for designing a nanocomposite with improved mechanical performance is also discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要