Transcription factors use a unique combination of cofactors to potentiate different promoter-dependent steps in transcription

biorxiv(2022)

引用 1|浏览8
暂无评分
摘要
Transcription factors use DNA binding domains to recognise specific sequences and transactivation domains to recruit the cofactor proteins necessary for transcription. However, how specific cofactors contribute to transactivation at different genes remains unclear. Here, we couple Gal4-transactivation assays with comparative CRISPR-Cas9 screens to identify the cofactors required by nine different transcription factors and nine different core promoters in human cells. We classify cofactors as ubiquitous or specific, discover novel transcriptional co-dependencies and demonstrate that submodules within large co-activator complexes, such as the tail 2 and kinase modules of Mediator, facilitate transcriptional elongation. Rather than displaying discrete mechanisms of action, we discover that each TF requires a unique combination of cofactors, which influence its ability to potentiate distinct steps in the transcriptional process. Our findings help reconcile models of cofactor-promoter compatibility by demonstrating that transcription at different classes of promoters is constrained by either initiation or pause release. These differences dictate cofactor compatibility and the dynamic range of gene expression. Overall, our screens provide insight into TF-cofactor relationships and their ability to potentiate different steps in transcription at different classes of promoters. ### Competing Interest Statement M.A.D. has been a member of advisory boards for GSK, CTX CRC, Storm Therapeutics, Celgene, and Cambridge Epigenetix and receives research funding from Pfizer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要