tDCS augments decision-making efficiency in an intensity dependent manner: A training study

Neuropsychologia(2022)

引用 1|浏览6
暂无评分
摘要
The application of transcranial direct current stimulation (tDCS) to the prefrontal cortex has the potential to improve performance more than cognitive training alone. Such stimulation-induced performance enhancements can generalize beyond trained tasks, leading to benefits for untrained tasks/processes. We have shown evidence that stimulation intensity has non-linear effects on augmenting cognitive training outcomes. However, it is currently unclear how stimulation intensity augments cognitive processing to impact training and transfer effects. Here, we applied decision-making modelling via the linear ballistic accumulator framework to understand what aspects of cognitive processes underlying speeded single-/dual-task decision-making performance change with tDCS intensity. One hundred and twenty-three participants were split into four groups: sham, 0.7 mA, 1.0 mA and 2.0 mA stimulation intensities. Participants completed four training sessions whilst tDCS was delivered. The 0.7 mA & 1.0 mA intensities provided the greatest benefit for performance (increased decision-making efficiency as measured by drift rates) on the trained task - more than sham or 2.0 mA stimulation. The latent decision components integrated both accuracy and reaction times to estimate performance more broadly. We see an inverted u-shaped function of stimulation intensity and cognitive performance in the trained-on task, where either no stimulation or too much stimulation is sub-optimal for performance. By contrast, 1.0 mA and 2.0 mA intensities led to increased drift rates in an untrained (transfer) single task. In sum, tDCS intensity non-linearly modulates cognitive processes related to decision-making efficiency.
更多
查看译文
关键词
Cognitive training,Decision-making,tDCS,Intensity (dosage),Linear ballistic accumulator
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要