Direct Observation of Dynamically Localized Quantum Optical States

Physical Review Letters(2022)

引用 0|浏览14
暂无评分
摘要
Quantum-correlated biphoton states play an important role in quantum communication and processing, especially considering the recent advances in integrated photonics. However, it remains a challenge to flexibly transport quantum states on a chip, when dealing with large-scale sophisticated photonic designs. The equivalence between certain aspects of quantum optics and solid-state physics makes it possible to utilize a range of powerful approaches in photonics, including topologically protected boundary states, graphene edge states, and dynamic localization. Optical dynamic localization allows efficient protection of classical signals in photonic systems by implementing an analogue of an external alternating electric field. Here, we report on the observation of dynamic localization for quantum-correlated biphotons, including both the generation and the propagation aspects. As a platform, we use sinusoidal waveguide arrays with cubic nonlinearity. We record biphoton coincidence count rates as evidence of robust generation of biphotons and demonstrate the dynamic localization features in both spatial and temporal space by analyzing the quantum correlation of biphotons at the output of the waveguide array. Experimental results demonstrate that various dynamic modulation parameters are effective in protecting quantum states without introducing complex topologies. Our Letter opens new avenues for studying complex physical processes using photonic chips and provides an alternative mechanism of protecting communication channels and nonclassical quantum sources in large-scale integrated quantum optics.
更多
查看译文
关键词
quantum,states
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要