Purification-based quantum error mitigation of pair-correlated electron simulations

T. E. O'Brien,G. Anselmetti,F. Gkritsis,V. E. Elfving,S. Polla,W. J. Huggins, O. Oumarou,K. Kechedzhi,D. Abanin,R. Acharya,I. Aleiner,R. Allen, T. I. Andersen,K. Anderson, M. Ansmann, F. Arute,K. Arya,A. Asfaw,J. Atalaya,D. Bacon,J. C. Bardin,A. Bengtsson,S. Boixo, G. Bortoli,A. Bourassa, J. Bovaird, L. Brill, M. Broughton,B. Buckley, D. A. Buell, T. Burger,B. Burkett,N. Bushnell, J. Campero,Y. Chen, Z. Chen, B. Chiaro, D. Chik, J. Cogan, R. Collins, P. Conner,W. Courtney,A. L. Crook,B. Curtin,D. M. Debroy, S. Demura,I. Drozdov,A. Dunsworth,C. Erickson,L. Faoro,E. Farhi,R. Fatemi,V. S. Ferreira, L. Flores Burgos,E. Forati,A. G. Fowler,B. Foxen, W. Giang,C. Gidney,D. Gilboa,M. Giustina, R. Gosula,A. Grajales Dau, J. A. Gross, S. Habegger,M. C. Hamilton, M. Hansen,M. P. Harrigan, S. D. Harrington, P. Heu,J. Hilton, M. R. Hoffmann,S. Hong,T. Huang, A. Huff,L. B. Ioffe,S. V. Isakov, J. Iveland, E. Jeffrey,Z. Jiang,C. Jones,P. Juhas, D. Kafri,J. Kelly,T. Khattar,M. Khezri,M. Kieferová,S. Kim,P. V. Klimov,A. R. Klots, R. Kothari,A. N. Korotkov, F. Kostritsa,J. M. Kreikebaum, D. Landhuis, P. Laptev, K. Lau, L. Laws,J. Lee, K. Lee, B. J. Lester,A. T. Lill, W. Liu,W. P. Livingston,A. Locharla,E. Lucero,F. D. Malone,S. Mandra,O. Martin, S. Martin,J. R. McClean,T. McCourt,M. McEwen, A. Megrant,X. Mi, A. Mieszala,K. C. Miao,M. Mohseni,S. Montazeri,A. Morvan,R. Movassagh, W. Mruczkiewicz,O. Naaman,M. Neeley,C. Neill,A. Nersisyan,H. Neven,M. Newman, J. H. Ng, A. Nguyen, M. Nguyen, M. Y. Niu, S. Omonije,A. Opremcak, A. Petukhov, R. Potter,L. P. Pryadko,C. Quintana, C. Rocque,P. Roushan,N. Saei,D. Sank,K. Sankaragomathi,K. J. Satzinger,H. F. Schurkus, C. Schuster,M. J. Shearn, A. Shorter,N. Shutty, V. Shvarts, J. Skruzny,V. Smelyanskiy,W. C. Smith,R. Somma,G. Sterling, D. Strain,M. Szalay, D. Thor, A. Torres,G. Vidal,B. Villalonga,C. Vollgraff Heidweiller,T. White,B. W. K. Woo, C. Xing, Z. J. Yao,P. Yeh, J. Yoo, G. Young,A. Zalcman, Y. Zhang,N. Zhu,N. Zobrist,C. Gogolin,R. Babbush,N. C. Rubin

Research Square (Research Square)(2022)

引用 0|浏览63
暂无评分
摘要
An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Prior to fault-tolerant quantum computing, robust error mitigation strategies are necessary to continue this growth. Here, we study physical simulation within the seniority-zero electron pairing subspace, which affords both a computational stepping stone to a fully correlated model, and an opportunity to validate recently introduced ``purification-based'' error-mitigation strategies. We compare the performance of error mitigation based on doubling quantum resources in time (echo verification) or in space (virtual distillation), on up to $20$ qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques (e.g. post-selection); the gain from error mitigation is seen to increase with the system size. Employing these error mitigation strategies enables the implementation of the largest variational algorithm for a correlated chemistry system to-date. Extrapolating performance from these results allows us to estimate minimum requirements for a beyond-classical simulation of electronic structure. We find that, despite the impressive gains from purification-based error mitigation, significant hardware improvements will be required for classically intractable variational chemistry simulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要