Hydrogel-Derived Co 3 ZnC/Co Nanoparticles with Heterojunctions Supported on N-Doped Porous Carbon and Carbon Nanotubes for the Highly Efficient Oxygen Reduction Reaction in Zn-Air Batteries.

ACS applied materials & interfaces(2022)

引用 4|浏览13
暂无评分
摘要
It is crucial for metal-air batteries and fuel cells to design non-precious-metal catalysts instead of platinum-based materials to boost the sluggish oxygen reduction reaction (ORR). Herein, CoZnC/Co nanoparticles with heterojunctions supported on N-doped porous carbon and carbon nanotubes (CNTs) are fabricated by pyrolyzing the hydrogel prepared from melamine and citric acid chelated with Co/Zn ions. This hybrid shows strong ORR catalytic activity as its half-wave potential reaches 0.88 V (vs reversible hydrogen electrode (RHE)) in 0.1 M KOH and Zn-air batteries with the catalyst have higher discharge plateaus and capacity than those employing Pt/C. The hybrid mixed with RuO can also be used as an efficient bifunctional catalyst for rechargeable Zn-air batteries. The excellent performance is primarily derived from the CoZnC/Co heterojunctions, the electron transfer of which boosts the ORR catalysis. Moreover, the suitable ratio of Co/Zn in precursors results in the epitaxial growth of hollow CNTs and abundant mesopores, hence promoting the adsorption of oxygen and the transport of ORR-related species.
更多
查看译文
关键词
CNTs,Co3ZnC/Co heterojunctions,ORR catalysts,Zn−air battery,hydrogel
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要