Effect and underlying mechanisms of spirocyclopiperazinium salt compound DXL-A-24 in rats following spinal nerve ligation

Qin Liu,Xiaoli Gao, Tianyu Wang, Xin Wang,Runtao Li,Yimin Jiang,Jia Ye

Brain Research(2023)

引用 1|浏览3
暂无评分
摘要
PURPOSE:Neuropathic pain represents a significant public health problem and its effective management remains a challenge. The present study is designed to evaluate the analgesic effect of the spirocyclopiperazinium salt compound DXL-A-24 in spinal nerve ligation (SNL) model, and further to explore the possible molecular mechanisms. METHODS:SNL model was established on rats, and mechanical allodynia and thermal hyperalgesia were estimated with the von Frey and hot plate tests; the expression of CaMKIIα, CREB, JAK2, STAT3 and c-fos was determined by western blotting; the protein level of TNF-α was analysed by ELISA; the mRNA expression of TNF-α and c-fos was detected using qRT-PCR analysis and the receptor blocking test was used for target searching. RESULTS:Administration of DXL-A-24 (1, 0.5, 0.25 mg/kg, i.g.) obviously relieved SNL-induced mechanical allodynia and thermal hyperalgesia in rats (P < 0.01), with the percentage of pain threshold elevation (PTE%) was 103 %, 68 % and 47 %, respectively, in mechanical allodynia; the percentage of maximal possible effect (MPE%) was 56 %, 34 % and 21 %, respectively, in thermal hyperalgesia on day 7 after SNL. Pretreatment with peripheral α7 nicotinic or M4 muscarinic receptor antagonist, the effect of DXL-A-24 was completely blocked (P > 0.05). DXL-A-24 significantly reduced the upregulated pCaMKIIα, pCREB, pJAK2, pSTAT3 and TNF-α protein (P < 0.01), which could be blocked by α7 nicotinic receptor or M4 muscarinic receptor antagonist. In addition, administration of DXL-A-24 attenuated the mRNA and protein expression of c-fos and TNF-α mRNA in DRG of SNL rat. We did not observe significant acute toxicity and chronic hepatorenal impairment at effective dose and high dose. CONCLUSIONS:We report firstly that administration of DXL-A-24 displays obvious antineuropathic pain effects in SNL rats. The underlying mechanism may involve the reduction of the CaMKIIα/CREB and JAK2/STAT3 signalling pathways, and the suppression of TNF-α and c-fos expression, which may be mediated by activating peripheral α7 nicotinic and M4 muscarinic receptors. This study may provide a new perspective for developing new antineuralgic drug.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要