Detecting Boolean Asymmetric Relationships with a Loop Counting Technique and its Implications for Analyzing Heterogeneity within Gene Expression Datasets

Haosheng Zhou,Wei Lin, Sergio R. Labra,Stuart A. Lipton, Jeremy A. Elman, Nicholas J. Schork,Aaditya V. Rangan

biorxiv(2024)

引用 2|浏览4
暂无评分
摘要
Many traditional methods for analyzing gene-gene relationships focus on positive and negative correlations, both of which are a kind of ‘symmetric’ relationship. Biclustering is one such technique that typically searches for subsets of genes exhibiting correlated expression among a subset of samples. However, genes can also exhibit ‘asymmetric’ relationships, such as ‘if-then’ relationships used in boolean circuits. In this paper we develop a very general method that can be used to detect biclusters within gene-expression data that involve subsets of genes which are enriched for these ‘boolean-asymmetric’ relationships (BARs). These BAR-biclusters can correspond to heterogeneity that is driven by asymmetric gene-gene interactions, e.g., reflecting regulatory effects of one gene on another, rather than more standard symmetric interactions. Unlike typical approaches that search for BARs across the entire population, BAR-biclusters can detect asymmetric interactions that only occur among a subset of samples. We apply our method to a single-cell RNA-sequencing data-set, demonstrating that the statistically-significant BAR-biclusters indeed contain additional information not present within the more traditional ‘boolean-symmetric’-biclusters. For example, the BAR-biclusters involve different subsets of cells, and highlight different gene-pathways within the data-set. Moreover, by combining the boolean-asymmetric- and boolean-symmetric-signals, one can build linear classifiers which outperform those built using only traditional boolean-symmetric signals. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要