Noradrenergic input from nucleus of the solitary tract regulates parabrachial activity in mice

biorxiv(2023)

引用 0|浏览4
暂无评分
摘要
The parabrachial complex (PB) is critically involved in aversive processes, and chronic pain is associated with amplified activity of PB neurons in rodent models of neuropathic pain. Here we demonstrate that catecholaminergic input from the caudal nucleus of the solitary tract (cNTScat)—a stress responsive region that integrates intero- and exteroceptive signals—causes amplification of PB activity and their sensory afferents. We used a virally mediated expression of a norepinephrine (NE) sensor, NE2h, fiber photometry, and extracellular recordings in anesthetized mice to show that noxious mechanical and thermal stimuli activate cNTS neurons. These stimuli also produce prolonged NE transients in PB that far outlast the noxious stimuli. Similar NE transients can be evoked by focal electrical stimulation of cNTS, a region that contains the noradrenergic A2 cell group that projects densely upon PB. In vitro, optical stimulation of cNTScat terminals depolarized PB neurons and caused a prolonged increase the frequency of excitatory synaptic activity. A dual opsin approach showed that sensory afferents from the caudal spinal trigeminal nucleus are potentiated by cNTScat terminal activation. This potentiation was coupled with a decrease in the paired pulse ratio, consistent with an cNTScat - mediated increase in the probability of release at SpVc synapses. Together, these data suggest that A2 neurons of the cNTS generate long lasting NE transients in PB which increase excitability and potentiate responses of PB neurons to sensory inputs. These reveal a mechanism through which stressors from multiple modalities may potentiate the aversiveness of nociceptive stimuli. Significance Statement Increased excitability of the parabrachial nucleus (PB), a key integrative hub for aversive stimuli, is linked to amplified pain behaviors. We show that prolonged norepinephrine (NE) transients in PB following noxious stimulation in mice. These NE transients potentiate sensory input to PB and arise, at least in part, from catecholaminergic projections from the caudal nucleus of the solitary tract (cNTScat). We propose that activity this cNTScat to PB pathway may potentiate the aversiveness of pain. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要