Non-destructive analysis of swelling in the EMPIrE fuel test

Journal of Nuclear Materials(2022)

引用 4|浏览7
暂无评分
摘要
The European Mini-Plate Irradiation Experiment (EMPIrE) was designed to support the development and testing of a coated uranium-molybdenum (U-Mo) dispersion fuel for the conversion of select high-performance research reactors (HPRRs) to utilize low-enriched uranium (LEU). To aid in the development of the coated fuel form, the EMPIrE test included several plate designs and irradiated them in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) at a high meat power density (∼21 kW/cm3) and to high fuel particle fission densities (∼6.4 × 1021 fissions/cm3). These conditions mimic the bounding conditions of the BR-2 reactor in Belgium, where a concurrent irradiation experiment was performed, and exceed those previously explored in dispersion U-Mo fuel plates. A local fuel swelling analysis, as determined through high-fidelity, post-irradiation mini-plate profilometry, was used along with statistical methods to non-destructively evaluate the overall performance and separate the effects of convoluted fabrication variables. While some effects observed with this non-destructive analysis were subtle, others had more significant, and possibly competing, effects on the fuel swelling behavior. These observations will be examined further with destructive examinations to more fully assess them as the fuel design is developed and qualified.
更多
查看译文
关键词
U-Mo dispersion fuel,Fuel swelling,Non-destructive examination,Post-irradiation examination,Low-enriched uranium,Research reactor fuel
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要