Application of biochar on soil bioelectrochemical remediation: behind roles, progress, and potential

CRITICAL REVIEWS IN BIOTECHNOLOGY(2024)

引用 4|浏览4
暂无评分
摘要
Bioelectrochemical systems (BESs) that combine electrochemistry with biological methods have gained attention in the remediation of polluted environments, including wastewater, sludge, sediments, and soils. The most attractive advantage of BESs is that the solid electrode is used as an inexhaustible electron acceptor or donor, and biocurrent directly converted from organics can afford the reaction energy of contaminant breakdown, crossing the internal energy barrier of endothermic degradation, which achieves a continuous biodegradation process without the simultaneous use of exogenetic chemicals and bioelectricity recovery. However, soil BESs are hindered by expensive electrode materials, difficult pollutant and electron transfer, low microbial competitive activity, and biocompatibility in contamination remediation. Fortunately, introducing biochar into soil BESs could reveal a high potential in addressing these BES inadequacies. The characteristics of biochar, e.g., conductivity, transferability, high specific surface area, high porosity, large functional groups, and biocompatibility, can improve the performance of soil BESs. In fact, biochar not only carries electrons but also transfers nutrients, pollutants, and even bacteria by facilitating transmission in the bioelectric field of BESs. Consequently, the abilities of biochar make for better functionality of BESs. This review collates information on the roles, application, and progress of biochar in soil BESs, and future prospects are given. It is beneficial for environmental researchers and engineers to extend BES application in environmental remediation and to assist the progress of carbon sequestration and emission reduction based on the inertia of biochar and the blocking of electron flow to form methane. [GRAPHICS]
更多
查看译文
关键词
Biochar,characteristics,bioelectrochemical system,soil remediation,mass transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要