Reconstructing radial stem size changes of trees with machine learning

JOURNAL OF THE ROYAL SOCIETY INTERFACE(2022)

引用 1|浏览4
暂无评分
摘要
Like many scientists, ecologists depend heavily on continuous uninterrupted data in order to understand better the object of their study. Although this might be straightforward to achieve under controlled laboratory conditions, the situation is easily complicated under field conditions where sensors and data transmission are affected by harsh weather, living organisms, changes in atmospheric conditions etc. This often results in parts of the data being corrupted or missing altogether. We propose the use of the most recent machine-learning techniques to reverse such data losses in multi-channel time series. In particular, we focus on tree stem growth data obtained from the TreeNet project, which monitors the changes in stem radius and environmental conditions of a few hundred trees across Switzerland. In the first part of the study, we test the performance of five architectures based on encoders and recurrent and convolutional neural networks, and we show that a deep neural network combining long short-term memory with one-dimensional convolutional layers performs the best. In the second part, we adopt this model to reconstruct the original TreeNet dataset, which we then use in a separate classification problem to show the effect of the proposed gap-filling procedure.
更多
查看译文
关键词
time-series analysis, imputation, tree growth, machine learning, convolutional neural networks, long short-term memory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要