Disrupted seasonal cycle of the warm-adapted and main zooplankter of Lake Biwa, Japan

Journal of Great Lakes Research(2022)

引用 2|浏览6
暂无评分
摘要
The seasonal cycle is an important feature of life, leading to the succession of different species and allowing them to share a common environment. Disruption in the seasonal cycle of many species has been reported, but the source of disruption varies from species to species. Lacustrine zooplankton species are widely acknowledged to respond to climate-induced, thermal and trophic variations. Here, we discuss the case of a warm-adapted copepod in Lake Biwa (i.e., Eodiaptomus japonicus), which experienced changes in trophic status and thermal regime over four decades (1966–2010). We investigated the phenological response of E. japonicus to these changes over this period and aimed to identify the sources of the observed variations. The combined results of wavelet analysis and cluster analysis indicated that E. japonicus exhibited different seasonal cycles during the study period. The common unimodal seasonal cycle of the copepod was disrupted on several occasions during which it presented sometimes two or three modes. Wavelet coherence analysis revealed a strong stationary correlation with lake temperature for the total abundance, the clutch size, and the birth rate, but a transient correlation with the body size of females at the annual scale. No coherence was found with food proxies. Discriminant analysis between unimodal and plurimodal seasonal cycles highlighted the effect of low temperature and high predation in leading to plurimodal cycles. Our study emphasizes the need for considering the seasonality of both lower and higher trophic levels for understanding zooplankton phenology.
更多
查看译文
关键词
Disrupted seasonal cycle,Warm-adapted copepods,Lake
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要