Identifying Key Descriptors for the Single-Atom Catalyzed CO Oxidation

CCS CHEMISTRY(2022)

引用 29|浏览14
暂无评分
摘要
Fundamental knowledge of structure-activity correlations for heterogeneous single-atom catalysts (SACs) is essential in guiding catalytic design. While linear scaling relations are powerful for predicting the performance of traditional metal catalysts, they appear to fail with the involvement of SACs. Comparing the catalytic CO oxidation activity of different atomically dispersed metals (3d, 4d, and 5d) in conjunction with computational modeling enabled us to establish multiple scaling relations between the activity and simply calculated descriptors. Through these efforts, we found that the thermodynamic driving force for the oxygen vacancy formation needed to be considered in addition to the adsorption energies of substrates (in particular CO). Our approach was to reduce the computational requirements in determining better CO oxidation catalysts using a few key thermodynamic descriptors. This work presents one of the first successful approaches for re-establishing scaling relations for catalytic reactions by SACs with potentially broad implications for catalytic processes actively involving this support. [GRAPHICS]
更多
查看译文
关键词
scaling relations, transition metals, carbon monoxide, single-site catalysts, polyoxometalate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要