Deviation-based wavefront correction using the SPGD algorithm for high-resolution optical remote sensing

APPLIED OPTICS(2022)

引用 3|浏览1
暂无评分
摘要
Model-free image-based wavefront correction techniques, such as the stochastic parallel gradient descent (SPCD) algorithm, will be useful in achieving diffraction-limited optical performance in near-future optical remote sensing systems. One difficulty facing the image-based method is that the correction performance depends on the evaluation metric and the evaluated scene. We propose several evaluation functions and investigate the relationship between the optimization speed and the scene textures for each metric in the SPCD algorithm. Based on the simulation results, the study experimentally compared wavefront correction performance using four cost functions and two extended aerial images. Consequently, we found that the deviation-based cost function allowed efficient wavefront correction for versatile extended scenes. In addition, observing extended scenes with distinct structures can facilitate correction speed. Furthermore, we numerically validated this approach in a segmented-aperture imaging system for large telescopes. We believe that the presented approach allows us to realize spaceborne remote sensing with unprecedented high angular resolution. (C) 2022 Optica Publishing Group
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要